832 research outputs found

    A Health Impact Analysis of the Affordable Warmth Programme: 2014-2018

    Get PDF

    Role of substrate outgassing on the formation dynamics of either hydrophilic or hydrophobic wood surfaces in atmospheric-pressure, organosilicon plasmas

    Get PDF
    This work examines the influence of substrate outgassing on the deposition dynamics of either hydrophilic or hydrophobic coatings on wood surfaces in organosilicon, dielectric barrier discharges. Sugar maple and black spruce wood samples were placed on the bottom electrode and the discharge was sustained in N2–HMDSO (hexamethyldisiloxane) gas mixtures by applying a 24 kV peak-to-peak voltage at 2 kHz. Current–voltage characteristics revealed a transition from a filamentary to a homogeneous discharge with increasing plasma treatment time, t. Based on opticalemission spectroscopy, the filamentary behaviorwas ascribed to the release of air and humidity from the wood substrate following discharge exposure which produced significant quenching of N2 metastables. This effect vanished at longer treatment times due to the nearly complete “pumping” of products from the wood substrate and the progressive deposition of a “barrier” layer. Analysis of the surface wettability through static, water contact angles (WCAs) and of the surface composition through Fourier-Transform-Infra-Red-Spectroscopy and X-ray-Photoelectron-Spectroscopy indicated that for t b 10 min, the wood surface was more hydrophilic due to the formation of a SiOx layer, a typical behavior for HMDSO deposition in presence of oxygen. On the other hand, for t > 10 min, the static WCA increased up to ~140° due to the deposition of hydrophobic Si(CH3)3-O-Si(CH3)2, Si(CH3)3, and Si(CH3)2 functional groups

    Being warm being happy: understanding factors influencing adults with learning disabilities being warm and well at home with inclusive research

    Get PDF
    The aim of the Being Warm Being Happy project was to understand and characterise fuel poverty and energy vulnerability from the perspective of adults with learning disabilities. Undertaken in community settings in South Yorkshire, UK, the study adopted an inclusive research approach, with three members of a self-advocacy organisation who have learning disabilities and/or autism working alongside academics as co-researchers. The study incorporated home temperature and humidity measurements and qualitative individual interviews. Ten households, all of which included an adult with learning disabilities participated in the research. Framework analysis identified four interrelated themes influencing decisions about energy use and payment method. First, energy need varied according to health status. Energy need was also influenced by the size, tenure and age of the participant’s home. Second, emotions, attitudes and values, in particular a sense of control impacted upon energy use. Third, knowledge and previous experience could help or hinder participants keeping warm. Factors included prior first-hand experiences of support from self-advocacy organisations, energy companies and local authorities and the influence of parents’ views and practices. Finally, concerns about affordability and challenges accessing the energy market also had an important impact on experiences and decisions. The research contributes to the limited evidence base about the nature and experience of fuel poverty amongst adults with learning disabilities highlighting the extent to which the existing energy system puts them at a disadvantage and the resourcefulness and resilience of many adults with learning disabilities when facing these challenges

    Ground-motion prediction models for induced earthquakes in the Groningen gas field, the Netherlands

    Get PDF
    Small-magnitude earthquakes induced by gas production in the Groningen field in the Netherlands have prompted the development of seismic risk models that serve both to estimate the impact of these events and to explore the efficacy of different risk mitigation strategies. A core element of the risk modelling is ground-motion prediction models (GMPM) derived from an extensive database of recordings obtained from a dense network of accelerographs installed in the field. For the verification of damage claims, an empirical GMPM for peak ground velocity (PGV) has been developed, which predicts horizontal PGV as a function of local magnitude, ML; hypocentral distance, Rhyp; and the time-averaged shear-wave velocity over the upper 30 m, VS30. For modelling the risk due to potential induced and triggered earthquakes of larger magnitude, a GMPM for response spectral accelerations has been developed from regressions on the outputs from finite-rupture simulations of motions at a deeply buried rock horizon. The GMPM for rock motions is coupled with a zonation map defining frequency-dependent non-linear amplification factors to obtain estimates of surface motions in the region of thick deposits of soft soils. The GMPM for spectral accelerations is formulated within a logic-tree framework to capture the epistemic uncertainty associated with extrapolation from recordings of events of ML ≤ 3.6 to much larger magnitudes

    Ground-motion prediction models for induced earthquakes in the Groningen gas field, the Netherlands

    Get PDF
    Small-magnitude earthquakes induced by gas production in the Groningen field in the Netherlands have prompted the development of seismic risk models that serve both to estimate the impact of these events and to explore the efficacy of different risk mitigation strategies. A core element of the risk modelling is ground-motion prediction models (GMPM) derived from an extensive database of recordings obtained from a dense network of accelerographs installed in the field. For the verification of damage claims, an empirical GMPM for peak ground velocity (PGV) has been developed, which predicts horizontal PGV as a function of local magnitude, ML; hypocentral distance, Rhyp; and the time-averaged shear-wave velocity over the upper 30 m, VS30. For modelling the risk due to potential induced and triggered earthquakes of larger magnitude, a GMPM for response spectral accelerations has been developed from regressions on the outputs from finite-rupture simulations of motions at a deeply buried rock horizon. The GMPM for rock motions is coupled with a zonation map defining frequency-dependent non-linear amplification factors to obtain estimates of surface motions in the region of thick deposits of soft soils. The GMPM for spectral accelerations is formulated within a logic-tree framework to capture the epistemic uncertainty associated with extrapolation from recordings of events of ML ≤ 3.6 to much larger magnitudes
    corecore